

ARPEL ASME IPG 2021

International Pipeline Geotechnical Conference

VIRTUAL CONFERENCE JUNE 21-22

Integrity-Focused Geohazards Management for Pipelines

Yong-Yi Wang, Banglin Liu, and Patrick Fleck

ywang@cres-Americas.com

Center for Reliable Energy Systems, LLC

Overview

- "Traditional"- vs. integrity-focused geohazards management
- Integrity-focused approach, i.e., fitness-for-service (FFS) assessment
 - Framework
 - Strain demand
 - Strain capacity
- Examples of using FFS assessment to guide mitigation decisions
- Prepare for FFS-focused geohazards management
- Available resources

"Traditional" Geohazards Management

- Focus on the detection, characterization, mitigation, and monitoring of hazards
- Mitigation decisions are made based on the characteristics of hazards.
- The varying level of strain tolerance of pipelines is given limited consideration.

Integrity-Focused Geohazards Management

- Focus on pipe integrity
- Use integrity assessment to drive decisions about mitigation decisions, i.e., FFS assessment
 - Necessary?
 - When?
 - How?
 - Hazards
 - Pipe
- Two-step process
 - Screening
 - Site-specific analysis

Advantages of FFS-Focused Approach

- Only do what is needed
- Have a sense of safety margin
- Cost vs. safety
 - Traditional program
 - Pros
 - Don't need to know much about the conditions of pipelines
 - Cons
 - Could lead to unnecessary or overly-aggressive mitigation actions
 - Site work could introduce additional stresses
 - FFS-focused approach
 - Pros
 - Likely more cost-effective in the long term
 - Better understanding of the risk level associated with mitigation decisions
 - Cons
 - Need pipe, weld, and construction information which may not be readily available

FFS-Centered Approach

- Goal understand the health of the pipeline at the time of interest
 - Present
 - Future
- Fitness-for-service assessment
 - Safe condition
 - ϵ_d (strain demand) $\leq \epsilon_d^{L}$ (strain demand limit)
 - $\varepsilon_d^{\ L} = f$ (safety factor) × ε_c (strain capacity)

Estimation/Determination of Strain Demand

- Quick strain demand estimation based on deformation profile
- Screening and analysis of IMU data
 - Blind spots
 - Strain adjacent to bends
 - Weld "bumps"
 - Correlation with geohazards at low level of bending strain
- Analysis of strain gage data
 - Resolution of bending plane
 - Separation of bending vs. uniform tensile/compression components
 - Temperature compensation
- Pipe-soil interaction modeling

Estimation of Tensile Strain Capacity

- Part 1 Use appropriate procedures/tools
 - PRCI-CRES tensile strain models (PRCI project ABD-1 co-funded by PHMSA)
 - PRCI SIA-1-7 model/tool targeted application for vintage pipelines using the Level 4a procedure of PRCI-CRES models
- Part 2 Collect system/line-specific information
 - Weld strength mismatch, including HAZ softening if applicable
 - Weld profile
 - Type and dimensions of flaws
 - Toughness
- Part 3 Perform analysis under various possible field conditions
 - Interaction of various parameters

Estimation of Tensile Strain Capacity

- Understand evolution of key factors affecting TSC for pipelines of different vintage
 - Mechanical properties
 - Linepipe
 - Girth weld
 - Construction practice
 - Girth welding
 - Girth weld inspection
 - Characteristics of post-construction weld flaws
- Understand applicable range and limits of TSC tools

Integrity-Focused Geohazards Management for Pipelines

Compressive Strain Capacity

- Most published compressive strain models/equations are overly conservative for applications in many geohazards conditions involving buried pipelines.
- Alternative assessment method for buried pipelines is available.
 - Liu, M., Wang, Y.-Y., Sen, M., and Song, P., "Integrity Assessment of Post-Peak-Moment Wrinkles," Proceedings of the 11th International Pipeline Conference, Paper No. IPC2016-64654, September 26-September 30, 2016, Calgary, Alberta, Canada.

Example 1 - Using FFS to Make Mitigation Decisions

- Recommendations Site 1
 - Site stabilization
 - No stress relief
 - Continued monitoring
- Recommendations Site 2
 - Stress relief (low capacity, low margin)
 - Site stabilization
 - Monitoring

Landslide Site No.	1	2
Total Span (ft)	160	130
Max. Displacement (ft)	3.5	2.0
Strain Demand (%)	0.35-0.60	0.22-0.30
Strain Capacity (%)	0.90-1.45	0.55-0.65
Capacity - Demand (%)	0.55-0.85	0.15-0.35
Demand/Capacity	0.40-0.43	0.35-0.70
Allowable Additional Displacement (ft)	4.0	1.0

Integrity-Focused Geohazards Management for Pipelines

Example 2 - Using FFS to Make Mitigation Decisions

- A pipeline segment was displaced by a landslide.
 - Should normal operation be continued?
- Level 1 quick turn-around FFS assessment was completed
 - No immediate integrity concerns were identified.
 - The line remained in service with full pressure.
 - Site mitigation was planned in dry months.
- Leve 2 FFS assessment was completed while mitigation options were explored.
 - The margin of safety was good.

Example 2 - Using FFS to Make Mitigation Decisions

- Site work
 - No stress relief
 - Drains were installed.
 - Strain gages were installed in critical locations identified by the strain demand analysis
- Future integrity management
 - Strain threshold for future intervention/action
 - Monitoring/reporting processes

Integrity-Focused Geohazards Management for Pipelines

Enabling Integrity-Focused Geohazards Management

- Prepare data for FFS assessment
 - Vintage pipelines
 - Test pipes and girth welds (opportunistic testing)
 - Understand flaw characteristics of girth welds
 - Modern pipelines
 - Organize records
 - Perform targeted tests as needed
- Have a pre-defined framework
 - Overall geohazards management process (e.g., INGAA JIP)
 - Process to collect samples and conduct tests
 - Organize data in useable forms

Conference

eotechnical

Integrity-Focused Geohazards Management for Pipelines

The American Society of Mechanical Engineers ASME[®]

References with Comprehensive Information JP 2017 INGAA JIP 2020 Understand Ground Movement Hazards Understand Strangenent of Ground Movement Hazards Understand Strangenent Hazards Understand Strangenet Hazards Understand Strangenet H

Principal Investigator: Yong-Yi Wang Center for Reliable Energy Systems (CRES)

5858 Innovation Drive Dublin, OH 43016 www.cres-americas.com

February 28, 2017

https://www.ingaa.org/Foundation/FDNreports/38774.aspx

Prepared for The INGAA Foundation and a Group of Sponsors Prepared by Geosyntee Consultants, Inc. Golder Associates, Inc. Center for Reliable Energy Systems (CRES)

for Pipelines

https://www.ingaa.org/Foundation/FDNreports/38063.aspx

Landslide Hazards

Integrity-Focused Geohazards Management for Pipelines

The American Society of Mechanical Engineers ® *ASME* [®]

Resources

- Response plan after a ground movement event
- Excavation and backfill in the area of geohazards
- Enhancement of girth weld strain capacity
- Assessment of interacting threats, e.g., corrosion and high strain, mechanical damage and high strain
 - Strain capacity
 - Burst pressure

Acknowledgement

- PHMSA and PRCI for funding the early development of the strainbased design and assessment methodology
- Sponsors of the 2017 JIP
- Sponsors of the 2020 INGAA JIP
- Pipeline operators
- Staff at CRES
 - Dr. Dan Jia

Integrity-Focused Geohazards Management for Pipelines

Thank you!

Q&A

The American Society of Mechanical Engineers ® ASME®

Use Strain Demand to Rank and Priotorize

- Overlaying geotechnical assessment with IMU
 - Geotechnical assessment
 - Location
 - State of movement
 - Risk of future movement
 - IMU strain reports
- Ranking and prioritization could be done based on strain demand alone.

Integrity-Focused Geohazards Management for Pipelines